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Abstract: The Pacific Northwest Geodesic Array at Central Washington University
collects telemetered streaming data from 450 GPS stations. These real-time data
are used to monitor and mitigate natural hazards arising from earthquakes, volcanic
eruptions, landslides, and coastal sea-level hazards in the Pacific Northwest. The
displacement measurements are performed at millimeter-scale, and require stringent
analysis and parameter estimation techniques. Recent improvements in both accuracy
of positioning measurements and latency of terrestrial data communication have led
to the ability to collect data with higher sampling rates, of up to 1 Hz. For seismic
monitoring applications, this means 1350 separate position streams from stations
located across 1200 km along the West Coast of North America must be able to be
both visually observed and analyzed automatically. We aim to make the real-time
information from GPS sensors easily available, including public access via interfaces
for all intelligent devices with a connection to the Internet.
Our contribution is a dashboard application that monitors the real-time status of the
network of GPS sensors. We are able to visualize individual and multiple sensors using
similar time series scales. We are also able to visualize groups of sensors based on
time-dependent statistical similarity, such as sensors with the the highest variance,
in real-time. In addition to raw positioning data, users can also display derived
quantities, such as the Allan variance or the second derivative of a data stream.
Keywords: Real time dashboard, signal analysis, data streaming, GPS, slow earth-
quake.

1 Introduction

The Pacific Northwest Geodesic Array (PANGA) Geodesy Laboratory at Central Washington
University (CWU) has a primary scientific role to support high precision geodetic measurements
using Global Positioning System (GPS) observations in order to characterize crustal deforma-
tion, plate tectonic motions, coastal and earthquake hazards, and other environmental science
applications. Under contracts from the National Science Foundation, the National Aeronau-
tics and Space Administration, the U.S. Geological Survey, and UNAVCO, Inc., the Laboratory
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analyses all publicly shared GPS data within the Cascadia subduction zone [1] and greater Pa-
cific Northwest. The Geodesy Laboratory analyzes data from roughly 1000 GPS stations that
comprise the EarthScope Plate Boundary Observatory, whose stations span the Pacific-North
American tectonic plate boundary from Alaska to Mexico. Fig. 1 is a map of all stations cur-
rently analyzed by CWU. In addition to serving as the Data Analysis Facility for the PANGA,
the Geodesy Laboratory also supports field experiments on Cascades volcanoes and in main-
land Mexico, Baja California, California, Idaho, Montana, Oregon, and Washington. CWU also
operates a continuous GPS network in Nepal.

Data from 450 GPS stations are telemetered in real-time back to CWU, where they are pro-
cessed, also in real-time, using both NASA Jet Propulsion Lab’s RTG [2] software as well as
Trimble’s RTKNet Integrity Manager software to provide relative positioning of several mm res-
olution across the Cascadia subduction zone and its metropolitan regions. These real-time data
are used to monitor and mitigate natural hazards arising from earthquakes, volcanic eruptions,
landslides, and coastal sea-level hazards. In addition, they are also used to monitor man-made
structures such as Seattle’s sagging Alaska Way Viaduct, WA SR-520 and I-90 floating bridges
and power-generation/drinking-water-supply dams throughout the Cascadia subduction zone,
including those along the Columbia River.

The data streams from these 450 receivers is continuously downloaded, analyzed, archived
and disseminated, as part of the existent geophysics and tectonics research programs within the
Department of Geological Sciences, CWU. These tectonic displacement measurements are per-
formed at millimeter-scale, and requires stringent analysis and parameter estimation techniques.
The Geodesy Laboratory uses NASA’s GIPSY OASIS (GPS Inferred Positioning SYstem, Or-
bital Analysis and SImulation Software) software to translate GPS satellite phase observables
into position time series, and in-house parameter estimation and modeling software to quantify
crustal deformation caused by plate tectonics, earthquakes, landslides and volcanic eruptions.

Figure 1: Panga sensor placement.

The position of a GPS station is estimated from a combination of satellite range and carrier
phase measurements, with the position accuracy being heavily dependent on the accuracy of the
satellite ephemerides, stability of the Cesium time standards on board the orbiting satellites,
and the realism of models for both the tropospheric water content and electron density of the
ionosphere. In the early days of GPS positioning, when none of these variables were particularly
well-determined, long-duration observations were necessary to properly constrain models of each
error source, with typically a single position estimated daily. These daily solutions have enabled
the study of long term crustal deformation and even earthquake source processes, but only well
after the observations were recorded.

At it’s inception, the GPS receivers networks were designed to monitor tectonic displacements
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with a coarse-grained temporal resolution, with data reductions to one measurement per day.
However, over the intervening two decades, real- or near-real time estimates of ephemerides and
real-time estimations of satellite clock behavior and atmospheric delays have enabled positioning
estimates to be made at rates as rapid as once per second. Moreover, the widespread implemen-
tation of real-time data telemetry systems have enabled these high-rate position estimates to be
computed nearly in real-time. This, combined with increased precision in all aspects of GPS
position estimations, essentially transforms a continuously-operating, real-time networks of GPS
receivers into a seismic network capable of detecting the strong ground motion that accompanies
large earthquakes in real-time. For example, Fig. 2, shows data from one component of motion
at a single site due to the well known M9 2011 Tōhoku earthquake in Japan. This time series is
comparable to data from traditional seismic instrumentation for the event but is free from data
artifacts common to seismic instruments, such as "clipping" of a time series due to physical lim-
itations of the instrument response. Thus real-time high-sample-rate GPS solutions can provide
useful data to determine the magnitude of large earthquakes in the immediate quake aftermath
when the size of the event is still being determined and emergency response is being organized.

Ground deformation due to a major earthquake leads to a sudden change in the positions
of sensors across a wide zone. One outstanding problem in monitoring any large network of
continuously operating instruments is facile observation and analysis of its data streams. In the
case of the Pacific Northwest Geodetic Array, the 450 GPS stations each output three continuous
data channels: latitude, longitude and vertical position. For seismic monitoring applications, this
means 1350 separate position streams from stations located across 1200 km along the West Coast
of North America must be able to be both visually observed and analyzed automatically. One of
the characteristics of seismic events is spatial coherence of the observed earthquake deformation,
which requires that station behavior be monitored in spatially-clustered groups.

There are two conflicting factors which motivate our present work. One is the potentially
valuable information which can be extracted from the GPS sensors’ data stream for detecting
major earthquakes. Obviously, such data is valuable when extracted and processed in real-
time. This takes us to the second factor, which is the challenge posed by mining big datasets of
streaming data: we are more concerned about the abundance, not the lack of data. The recent
advancements in data collection, such as data streams from sensors, exceed the ability of the
data scientists to really put data in context of the questions and extract usable knowledge.

Our final goal is to make the real-time information from GPS sensors easily available. This
includes wider public access via interfaces for all intelligent devices with a connection to the
Internet. Practically, a geologist with mobile phone access, should have real-time access to
streaming GPS position data. When combined with other measurements and information, this
would help him to detect a major earthquake.

Our contribution is a dashboard application that monitors the real-time status of a network
of GPS sensors. We are able to visualize individual and multiple sensors using similar time series
scales. We are also able to visualize groups of sensors based on time-dependent statistical simi-
larity, such as sensors with the the highest variance, in real-time. In addition to raw positioning
data, users can also display derived quantities, such as the Allan variance or the second derivative
of a data stream.

Section 2 describes our interface to the PANGA data stream. Section 3 introduces our main
contribution, the dashboard application, whereas in Section 4 we discuss our results. In Section
5, we conclude with final remarks and open problems.
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Figure 2: Longitudinal movement of a GPS receiver located in Japan, during the Tōhoku earth-
quake. The read line is the reading and the gray area is one standard deviation border around
the reading.

2 The PANGA data output stream interface

The dashboard input data is the output of the PANGA network, and it consists of a list
of streams with active/inactive status. Each stream contains a set of samples, each containing
the North/West/Elevation displacements, as well as quality statistics. Although not used by
the dashboard, it is possible to compute the correlation between each pair of any of the three
dimensions with displacement. We first will describe the PANGA data structure and our interface
to the resulted output data stream.

The PANGA network aims to precisely measure the displacement of multiple locations orga-
nized in a network. Physically, the network is composed of a number of GPS receivers, which
receive signals from satellites and regularly send that data to a processing center using a cellular
radio network. In our data model, such a receiver is called a ’site’. Each site provides one or
more streams of processing solutions, which are displacement values and quality information.
Depending on the type of, the streams can contains raw solutions, or they are processed further
using a Kalman filter. Some streams provide data points every second, other streams provide an
aggregation of the data over a longer time span. Each stream contain a record payload storing
the time stamp, as well as the variations of the position with respect of north, east and elevation
relative to a reference position. It is possible for a stream to miss some points in time and it is
not guaranteed that all the data is available at every sampling time stamp. Fig. 3 depicts the
conceptual entities, described above, as well as the querying mechanism.

A large data repository1 is available, as well as the diverse real time data streams we focus on.
The challenge is to visualize and exploit the historical data to increase the accuracy of current
readings or to efficiently categorize a major earthquake. Literature examples, such as [3], show
that big data can overwhelm the analyst, either if the right algorithm is not in place, or if the
nature of the data does not address, directly or indirectly, the research questions.

The system can be interrogated using a RESTful Web interface2 that returns data serialized
in JSON. RESTful (Representational State Transfer) [4], although known for more a decade,
is a recently embraced concept in the architecture of web services that excludes the presence
of an established session between client and server, as opposite to the classical dynamic web

1
http://www.geodesy.cwu.edu/data_ftp_pub/data/

2
http://www.panga.org/realtime/data/api



82 R. Popovici, R. Andonie, W.M. Szeliga, T.I. Melbourne, C.W. Scrivner

approach of a shared state encompassed by the session. The advantages of the new approach are
the possibility to spread the server requests over a number of cluster nodes, as well as simplicity
in the implementation of both server and client, since it is eliminated the need to implement
system states and shared session. JSON (JavaScript Object Notation) [5] is an emerging standard
for structured data encoding, designed to replace XML in lightweight implementations, such as
browsers and mobile applications. Initiated by JavaScript, it can be used under most of the
modern platforms, including (in our case) Java.

The interface is composed of a set of query verbs and parameters. We use the verb sitelist

to acquire the list of the sites available. For each site, the response provides site attributes and
the streams associated with the site, including the status (active or inactive) of the stream.

The records verb provides access to the position data for a stream. The stream name is given
as a required parameter. The response is composed of the current set of positions for the stream,
the time stamp of the last record and current server time. The last record time stamp can be
used as an option parameter to constrain the next query for that stream. If the time stamp of the
last record of the previous query is included, then the response will only include records newer
than those received previously. In this way, the client maintains the state necessary to avoid the
unnecessary download of records that were already contained within a previous interrogation.

Site
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name : String

coor.la : Double

coor.lo : Double

available_error : String
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<<Entity>>

name : String
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1 1..*
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Figure 3: PANGA data model and web interrogation structure.

In the UML diagram of Fig. 3, conceptual classes are labeled with "Entity" stereotype, so
that they differentiate of JSON requests. Within a request, each attribute can be either input or
output. The associations of JSON requests are also of "Output" stereotype, since they are part
of the reply.

Multiple networks could be theoretically represented in the system. This is the reason why we
introduce the "Network" class. However, multiple networks may have different data models and
different querying systems For example, the network that captured the Tōhoku earthquake [6],
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only provides the standard deviation value for each of the three dimensions of displacement, as
a measure of precision, rather than the fill covariance of the solution.

For each data stream PANGA provides multiple "queues", with different sampling intervals.
This is a convenience for charting applications, which do not need to perform analysis, but for
our application we only request data from at the full sample rate.

3 The dashboard application

Our dashboard is oriented on stream processing, which facilitates the visualization of PANGA
data. The application is J2EE compliant, developed in two layers: the server layer consists of a
EJB singleton that downloads PANGA data, stimulated by a timer, while the second layer is a
web front end, which connects to the first layer and receives the instantaneous state of the data.
This way, independently of the number of the web dashboard, the PANGA server is only queried
once. As shown in Fig. 4, the implementation is divided into three logical layers: the interface
layer, the J2EE middle layer, and the data layer. Since the data layer is highly volatile and it
does not need to be persisted into a database, it is not implemented as an EJB entity. The J2EE
layer is responsible for scheduling of the downloads of PANGA data, as well as for the storage
of user configuration settings within the user session.

WebSessionBean

<<ManagedBean>>

<<SessionScoped>>

currentSelection : String

GetChart()

onChartClick()

Index.JSF

1 1

SiteProviderRemote

<<Remote>>

getSites()

setSites(Sites)

<<EJB>> 1..*1

SitesProvider

<<Singleton>>

getSites()

setSites(Sites)

DownloadService

<<Singleton>>

<<LocalBean>>

<<PostConstruct, Schedule>> downloadData()

<<EJB>>

1

1

Sites 11Stream 11..*

JFreeCHart

Scheduled by

the EJB Container
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are here HTML Layout

of visual controls

Data model

and basic

computation

Figure 4: Interface-centric class diagram of EJB components.

We run our application with the Oracle Glassfish application server [7], but it can be deployed
most of the J2EE application servers. Opposite to most of the J2EE applications, we don’t
mandate the existence of a back-end database, since we don’t persist any data outside the user
session scope. For future analysis, we save the JSON content downloaded by the application in
a local directory. Since this infringes the J2EE requirements, the option is only designated to be
used in a testing environment and shall be subject of scrutiny in case of deploying the application
on a cluster.

The application runs on both Windows and Linux server (with untested possibility to run
on Apple computers). We have tested all major browsers: Microsoft Internet Explorer, Mozilla
Firefox, Chrome, and Safari, with different screen resolutions. The best resolution to visualize
the dashboard is High Definition Television (HDTV) 1920 × 1080, resolution common to most
of the TV screens available on the market. It is possible to access the dashboard with mobile
devices, through the browser capability, as shown in Fig. 5.

The user interface layer is based on the PrimeFaces library [8], using Google Maps [9] for
spatial display of sensors (see Fig. 5). The selected sensors are displayed yellow, the active
ones green and the inactive transmitters are black. We extend the capabilities of the control,
provided by PrimeFaces, to allow replacement of map icons without the need for full reload of
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Figure 5: left: Screenshot of the dashboard on Apple IPad; right: Map of the sensors.

the control’s content. This way, we avoid flickering the map if the data has been changed. We
use the JFreeCharts library [10] to render the charts. The rendering occurs on the server side,
within the servlet container, JFreeCharts is able to render SVG content to a Java stream, by
receiving a Graphical Context object compatible with Java AWT drawing system. Using this
technique we render the main chart and Allan variance chart, shown in Fig. 6.

The PrimeFaces library was not designed with real time charts in mind. Particularly, it
is difficult to refresh the content of a chart without performing a full control refresh; even it
technologies like Ajax allow the discriminative refresh of specific controls on a page, refreshing
the image will cause it to disappear on the duration of the download, and then it reappears
again. Since a regular HTTP web transaction takes between 20-300 milliseconds, there are at
least a few frames when the image is missing. For this reason, we use a technique similar to the
double buffering: we load the content of the new chart in a hidden IMG element, then, once load
is completed, the content of the hidden image is moved to the visible image control. Since this
last operation is performed on the user browser, its duration is in sub-millisecond range, hence
no flickering occurs.

A similar challenge has been observed for the map control. When a new set of sensor data is
available, the Google Map control requires a complete refresh, in order to accommodate the new
changes in the way envisioned by the authors of PrimeFaces. We had to access the control at
JavaScript level, remove the existing markups layers and add the newly available points. This
way, we retain the position of latitude and longitude, as well as the zoom level of the map,
established by the user on the local browser.

Fig. 7 shows a sensor plot, as well as the numeric second derivative of the signal, and the
local Allan variance.

4 Discussion

We used the second derivative and the Allan variance [11] to characterize the GPS data
streams. The Allan variance is a statistical measure of the stability of a series of observations
over various periods. This statistic was initially developed to investigate the stability of the
atomic oscillators that comprise most high-precision frequency standards [12, 13]. The Allan
variance is uniquely suited to identifying not only the frequency-dependency of noise in a time
series, but over what periods that noise operates.



Real-time Monitoring of Tectonic Displacements in the
Pacific Northwest through an Array of GPS Receivers 85

Figure 6: Allan variance chart.

Figure 7: Chart of sensor plot together with Allan variance and second derivative.
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GPS position time series are often composed of daily aggregates of higher-rate observations.
This aggregation is typically performed to improve the noise characteristics of the resulting
geodetic time series. Still, these daily aggregate time series are known to be contaminated by
colored noise [14]. In the past decade, time series composed of the higher-rate observations
themselves have begun to provide crucial measurements of absolute ground deformation, both
static and dynamic, due to earthquakes [15]. However, the noise characteristics of position time
series at sampling intervals shorter than one day are poorly known and are likely to be strongly
dependent on the subtleties of each GPS processing methodology [16]. The characterization of
the noise content of these high-rate GPS measurements is essential for their future use in the
study of earthquake deformation [17].

Previous authors [16,18,19] have used the Allan variance statistic to study the noise charac-
teristics of various geodetic time series, such as Earth Orientation Parameters, GPS position time
series, and VLBI baseline time series. With the advent of streaming of near-real-time, high-rate
GPS time series, we are provided with the opportunity to study not only the frequency character-
istics of high-rate geodetic time series, but their evolution with time. This ability to monitor the
evolution of the noise characteristic of each individual instrument in a network has implications
not only for the observation of near-real-time earthquake deformation and thus earthquake early
warning, but also for instrument and network state-of-health.

To compute the second derivative, we first determine the sampling rate of data (different
streams may have a different sampling rate) and then we apply eq. (1):

f ′′(x1) =
f(x0)− 2f(x1) + f(x2)

h2

where
h = x2 − x1 = x1 − x0

(1)

In our case, if any of f(x)|x ∈ {x0, x1, x2} does not exist, the second derivative for the point
x1 is not being computed.

The Allan variance is computed by eq. (2), where σ2y(x, τ) is the computed Allan variance,
y is the signal function, and τ is the time interval considered to compute the function.

σ2y(x, τ) =
(y(x− τ)− 2y(x) + y(x+ τ))2

2τ2
(2)

Since we took the value of τ to be equal with the sampling rate, we observe that:

σ2y(x, τ) =
(τy′′)2

2
(3)

According to eq. (3), the Allan variance and the second derivative are equivalent in meaning.
More specifically, the Allan variance is always positive and it differs from the second derivative
by a constant.

We plot eq. (2) by choosing a fixed x and letting the τ vary. The fixed x is provided by the
user, as a result of a mouse click in the chart. Based on chart scaling, we depict the variation of
time coordinate x in Fig. 6.

5 Conclusion and Open Problems

Our application runs on both Windows and Linux server, on all major browsers. Through
the web interface, we made PANGA data accessible the to a plurality of remote users. To cover
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a wider range of users, we plan to implement the same dashboard as a native Android and Apple
iOS (iPhone and iPad) application, so that availability of PANGA data to be truly ubiquitous.

One challenge to producing a fast and reliable classification technique of earthquakes is the
lack of training data. Major earthquakes large enough to produce significant ground deformation
across a large region are rare and at this time the only set of data of with high sampling rates
from a large and densely-instrumented GPS network is from the 2011 Tōhoku event sequence.
Therefore, it is of major interest to record the displacement data measurement in order to be
used for future data mining applications.

Another challenge is that there are significant noise and data quality issues with GPS data
streams. Some problems are common with those of seismic networks, such as telecommunications
glitches and outages. Others are unique to GPS data acquisition and processing. For example,
some atmospheric phenomenon can perturb GPS signals. Correlation with seismographs and
atmospheric sensors may be key elements in a system to identify earthquakes and perform a
rapid computation of an event’s magnitude.

It is an open problem to implement a classifier for these big noisy data GPS streams. Such a
classifier should be able to monitor and disseminate in real-time especially slow landslides, hard
to detect by seismographs, arising from earthquakes, volcanic eruptions, and other hazards.
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