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Abstract Sea-level rise observed at tide gauges need to be corrected for
vertical land motion, observed with GNSS, to obtain the absolute sea-level
rise with respect to the centre of the Earth. Both the sea-level and vertical
position time series contain temporal correlated noise that need to be taken
into account to obtain the most accurate rate estimates and to ensure realistic
uncertainties. Satellite altimetry directly observes absolute sea-level rise but
these time series also exhibit coloured noise. In this chapter we present noise
models for these geodetic time series such as the commonly used first order
Auto Regressive (AR), the General Gauss Markov (GGM) and the ARFIMA
model. The theory is applied to GNSS and tide gauge data from the Pacific
Northwest coast.
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2 GNSS Time Series to Quantify Sea-Level Rise

1 Introduction

One of the greatest consequences of climate change is rising the sea level. Due
to thermal expansion, the sea level is expected to increase by a third of a me-
ter by 2100. The exchange of water between the continents and the oceans
has the potential to cause as much as two meters of sea-level change by 2100,
mainly due to the melting of ice on the land and the subsequent oceanic
runoff. Greenland and Antarctica contain enough ice to raise global mean
sea-level by 7 m and 55 m respectively. Therefore, even the melting of only
a fraction of those large ice sheets can cause significant sea-level rise. Moun-
tain glaciers and other ice fields contain another meter of potential sea-level
change. According to recent studies (Church and White, 2011; IPCC , 2013),
sea-level rise will not be uniform around the world, due to spatial variations
in ocean density and due to change in gravity and ocean floor deformation
associated with the redistribution of this extra mass of water. Some ocean
regions might even see sea-level fall but on average sea-level is expected to
rise significantly in response to climate change. The melting of large bodies
of ice causes distinct patterns or fingerprints in the regional distribution of
sea-level change (Davis et al., 2012).

Regional sea-level can be monitored with tide gauges. However, these in-
struments only measure the relative sea-level and the vertical land motion at
the tide gauges needs to be observed to convert the relative sea-level observa-
tions into absolute ones (Church et al., 2010). If these tide gauge records are
used to make historical reconstructions of global sea-level rise, then the un-
certainty in the spatial covariance is another source of error (Christiansen et
al., 2010). As a result, careful modelling has to be applied before processing
tide gauge data taking into account stochastic processes and the correction
with vertical land motion.

Stochastic processes in tide gauge data are generally defined as tempo-
ral correlated noises which can affect the estimation of the rate uncertainty
rather than the estimated rate, also called relative sea-level rise (Montillet et
al., 2018). Temporal correlations are known to exist in many different types
of climatological and geophysical time-series (Press, 1978; Agnew, 1992; Be-
ran, 1992). Temporally correlated noise means that each observation is not
completely independent of the previous observations and effectively provides
less information than an independent or non-correlated observation. Several
models have been used to model those correlations (Church and White, 2011),
including a fifth-order auto regressive (Hughes and Williams, 2010; Hay et
al., 2013). However, Agnew (1992) pointed out that the power spectral den-
sity (PSD) of sea-level variations may be better described by a power-law
stochastic model. This stochastic model is generally described as a coloured
noise. The coloured noise can be defined in the frequency domain as a 1/fα

noise, with α varying between [0,2]. When the exponent of the coloured noise
is set to 0, the noise is called white noise, at 1 it is defined as Flicker noise,
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whereas at 2 it corresponds to a random-walk. More details can be found in
Chapter 2 of this book.

Along the coast, a combination of various geophysical processes generates
the vertical land motion (VLM) either regionally or locally near the tide
gauge. The nature of these geophysical processes can be from natural or an-
thropogenic origins, creating linear or transient non-linear signals. In particu-
lar, the study of long tide gauge (TG) records are impacted by glacial isostatic
adjustment (GIA) due to late Pleistocene deglaciation and interseismic tec-
tonic strain accumulation without local earthquakes (Lambeck and Johnston,
1995; Mitrovica and Davis, 1995). Non-linear processes include earthquakes,
annual hydrological oscillations either stationary or non-stationary in ampli-
tude or phase, time-dependent anthropogenic aquifer depletion or other re-
source extraction signals, soil compaction, climatic and ocean loading signals.
These signals must be taken into account when studying local and regional
sea-level rise due to the same order of magnitude (mm/yr) (Bos et al., 2014;
Hamlington et al., 2016; Montillet et al., 2018).

Fortunately, precise vertical land motion rates relative to the Earth’s ref-
erence frame can be estimated due to the availability of a dense network of
GPS stations generating a coastal profile. It then provides local and regional
corrections of solid-Earth processes that could potentially bias sea-level rise
measurements. Furthermore, this smooth regional VLM profile around the
coast resulting from the vast number of permanently installed coastal GPS
stations (e.g., Meertens et al., 2015; Blewitt et al. , 2016), can be used by
climate scientists studying regional and global variations of the sea-level rise,
without requiring any GPS expert knowledge.

In the next section, we will discuss functional and stochastic noise models
involved in an accurate estimation of relative sea-level rise (SLR) from tide
gauges, and in particular the correction with vertical land motion (VLM)
using near-by GNSS stations in order to obtain an absolute SLR. Section 3
is an application of this methodology in the estimation of sea-level rise in
the pacific northwest (USA). This example shows how to model GNSS time
series and tide gauges in order to produce reliable estimates. We emphasize
the various sources of error. The last section is a general discussion on the
estimation of global mean sea-level with the current research topics.

2 Estimation of Sea-Level Rise

2.1 Relative sea-level observed with tide gauges

The oldest measuring technique to observe the sea level has been tide gauges.
These have been installed in almost any harbour around the world to, as the
name implies, observe the local tides to ensure the safe entering and leaving
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of ships. The earliest tide gauges were nothing more than a marked staff in
the water that was read at regular intervals. The float tide gauge was an
improvement together with the automatic recording of the sea level on paper
rolls that made it possible to produce very long and accurate time series such
as those observed in Honolulu, Hawaii, (Colosi et al., 2006) and Boston, USA,
(Talke et al., 2018).

The Permanent Service for Mean Sea Level (PSMSL) has been collecting
monthly and yearly sea level data from tide gauges around the world (Holgate
et al., 2013) and this data set has been used in many sea level studies. The
trajectory model that is fitted to the observations is in most cases a simple
linear trend plus an annual and semi-annual signal although a tri-annual
signal is needed in some cases as well. Church et al. ( 2004) used simple
weighted least-squares and a simple first order autoregressive noise model,
AR(1), which is defined as:

wi = ϕwi−1 +vi (1)

where wi is the noise in the time series at time ti, ϕ a constant between
-1 and 1 and vi a Gaussian random variable. Bos et al. ( 2014) have veri-
fied that this works well for yearly data but not so much for monthly data.
The reason is that the AR(1) only needs to represent the noise for periods
of 2 to around 100 years. When monthly data is used, then this increases
from 2 months to 100 years and AR(1) has trouble to correctly describe the
stochastic properties for this wider frequency range.

In Chapter 2, we rewrote Eq. (1) in terms of a filter h that was applied to
the vector v with Gaussian random variables:

wi =
i∑

j=0
hj vi−j (2)

For the AR(1) noise model we have h0 = 1 and h1 = ϕ. In matrix notation
this becomes:

w =


h0 0 . . . 0
h1 h0 0
... . . . ...

hN−1 . . . h1 h0

v = Lv (3)

Here L is a lower triangle matrix (only values on and below the diagonal)
and it is Toeplitz. The covariance matrix C is equal to σ2LLT . Langbein
(2017) demonstrates that the inverse of matrix L is again a lower triangle
matrix and also Toeplitz:
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L−1 =


h′

0 0 . . . 0
h′

1 h′
0 0

... . . . ...
h′

N−1 . . . h′
1 h′

0

 (4)

The new elements h′
i of the inverse of matrix L can be computed as follows:

h′
0 = 1/h0 for i = 0

h′
i = −1/h0

i−1∑
j=0

h′
jhi−j for i > 1

(5)

Note that h0 = 1. Therefore, if the standard deviation of the Gaussian
variable v is σ, then the logarithm of the determinant of the covariance
matrix C is 2N lnσ. Furthermore, if A and y are the design matrix and
the vector containing the observations, then it is convenient to define the
following variables:

B = 1
σ

L−1A

z = 1
σ

L−1y
(6)

The weighted least-squares estimation now becomes:

x =
(

BT B
)−1

BT y (7)

Introducing residuals r = z−Bx, the log-likelihood function can be written
as:

ln(L) = −1
2

[
N ln(2π)+2N lnσ +rT r

]
(8)

By choosing the values for the parameters of the noise model, the coeffi-
cients hi can be computed. Together with the noise amplitude σ, the covari-
ance can be constructed which, using Eqs. (5) to (7) can be used to fit the
trajectory model using weighted least-squares. These noise parameters and
the noise amplitude must vary until the maximum log-likelihood value, Eq.
(8), has been found. This maximum likelihood scheme has been implemented
in the Hector software (Bos et al., 2013). Figure 1 shows the monthly sea level
of the tide gauge at Seattle which is one of the gauges discussed in section 3.
Using Eqs. (4) to (8), a linear trend plus annual and semi-annual signal has
been fitted to the observations which is also shown in Figure 1 . The power
spectral density of the residuals is plotted in Figure 2 together with the fit-
ted noise model AR(1). Eq. (1) can be extended to be dependent on the last
five noise values which is called a fifth order autoregressive model, AR(5).
This is also shown in Figure 2 together with the Generalised Gauss Markov
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Fig. 1: Monthly tide gauge data from Seattle (source PSMSL) with the fitted
trajectory model.

Fig. 2: Power spectral density plot of the residuals for the Seattle monthly
tide gauge data. Fitted are the power spectra using an AR(1), AR(5) and
GGM noise model.

noise model of Langbein (2004). The latter noise model fits better to the
observed power spectra at the lowest frequencies. Other possible noise mod-
els are ARMA and ARIMA which work well for time series with short-term
correlations. On the other hand the FARIMA model is more suited in the
presence of long-term correlations due to the versatility of modeling coloured
noise and other non-stationary stochastic processes (e.g., Panas, 2001; Mon-
tillet and Yu, 2014). Studies, such as Bos et al. ( 2014), estimate optimally
the lags p and q in the ARMA(p,q), ARIMA(p,d,q) and the FARIMA(p,d,q)
models using information criteria (e.g., Akaike Information Criterion or AIC
(Akaike, 1974) or the Bayesian Criterion (BIC) (Schwarz, 1978)) following
Burnham and Anderson ( 2002). AIC and BIC are defined as follows:

AIC = −2ln(L)+2k

BIC = −2ln(L)+k ln(N)
(9)

Thus, they are -2 times the log-likelihood plus a penalty term. The penalty
term corrects for the fact that a more flexible noise model will in most cases
fit the observed power spectrum better. By using a penalty term the more
flexible model will only be chosen if this model is significantly better. Due to
the minus sign of −2ln(L), the best model is the one that has the lowest AIC
or BIC value. Note that the parameter d in the ARIMA model is an integer
value (in Z,d > 0 ), whereas it is a real (in R,d > 0) in the FARIMA model.
These noise models are explained in more detail in Chapter 2. Bos et al. (
2014) demonstrated that sea level observations show weaker power-law noise
at the very low frequencies compared to GNSS data. As a result, the effect
on the uncertainty of the estimated linear trend, compared to a simple white
noise model, is less than that for GNSS time series.

Besides linear sea-level rise, there have been various studies that estimate
sea-level acceleration using tide gauge data (Jevrejeva et al., 2008) and satel-
lite altimetry (Church and White, 2006; Yi et al., 2017; Nerem et al., 2018).
It is the acceleration which is mainly responsible for the large sea-level rise
of 0.3-1 m mentioned in the introduction at the end of this century. To esti-
mate this acceleration, the first order polynomial in the trajectory model is
replaced by a second order one:
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Fig. 3: AVISO Global Mean Sea Level (GMSL) derived from satellite al-
timetry together with the fitted standard trajectory model which includes
acceleration.

y(ti) = a+ b(ti − t0)+ c(ti − t0)2 (10)

The acceleration is defined as twice the value of c (Bos et al., 2014).
Figure 1 shows a clear linear rise but the acceleration is more difficult to

distinguish. We estimate it to be 0.005±0.002 mm/yr2, which is thus indeed
very small but significant at the two sigma level. An advantage of estimating
accelerations is that vertical land motion due to post-glacial rebound, which
can for time spans of space geodetic data be considered to be a linear motion,
and therefore no longer a source of error. However, tide gauges are historically
most common in harbours which over the years get dredged or extended which
has an unknown influence on the mean sea-level due to changes in mean ocean
currents, see for example (Araújo et al., 2013).

2.2 Absolute sea-level observed with satellite altimetry

Nowadays sea level can also be measured from space using satellite altimetry.
the GEOSAT was the first satellite altimetry satellite that provided sea level
maps from 1985-1990. Other missions followed such as TOPEX/Poseidon
and Jason 1 & 2. In all cases the sea level is given with respect to a frame
connected to the centre of the Earth and is therefore absolute. The time se-
ries now span over 30 years and the most recent estimate of the acceleration
based on satellite altimetry is 0.084 ± 0.025 mm/yr2 for 1993-2018, without
various geophysical corrections applied (Nerem et al., 2018). These authors
used a simple AR(1) noise model to compute the uncertainty of their esti-
mate. They define their ‘noise’ as the difference between the altimetry and
tide gauge observations instead of the difference with their fitted model. To
study this error estimate, we use the global mean sea-level time series pro-
vided by AVISO as shown in Figure 3. This figure clearly shows a secular
sea-level rise which appears linear. The acceleration is harder to detect. Also
note the large effect of the El Niño Southern Oscillation on sea level in 2012.
The power spectral density of the original time series together with the fitted
white and AR(1) noise models are shown in Figure 4. At around a period of
30 days, the power drops several orders of magnitude suggesting a low-pass
filter has been applied. Therefore, to ensure that this does not influence our
results, we averaged sets of 4 consecutive values to form a new time series
with a sampling period of approximately 40 days. The corresponding mod-
elled AR(1) noise model is shown as the dotted red line in Figure 4. This
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Fig. 4: Power spectral density plot of the AVISO GSML data together with
fitted AR(1) and White noise models.

helps to verify that the influence of the high frequency filtering is minimal.

Table 1: Estimated accelerations using various noise models.

The estimated accelerations are listed in Table 1 using a White, AR(1), a
GGM and an ARFIMA(1,d,0) noise model. The last three models gave nearly
identical results of 0.058±0.020 mm/yr2.

These values fall between the result of 0.041 mm/yr2 for the period 1993-
2014 of Chen et al. ( 2017) and the value of 0.084 + / − 0.025 mm/yr2 for
1993-2018 of Nerem et al. (2018). Note that the 0.025 mm/yr2 uncertainty
of Nerem et al. (2018) is the sum of various error sources. What interests us
here is their uncertainty of 0.011 mm/yr2 associated to the estimation pro-
cess, using an AR(1) noise model, which is half of our value of 0.020 mm/yr2.
As explained before, they defined their residuals as the difference between al-
timetry data and tide gauge data and call it the tide gauge validation error.
It might be that these residuals underestimate the real uncertainty of the
estimation process or that the AR(1) noise model is too simplistic.

Nevertheless, one must add to this uncertainty various systematic errors
such as mismodelling of the orbit and drift of the altimetry amongst oth-
ers (Ablain, 2009). For satellite altimetry data, these systematic errors are
larger than the uncertainties associated with the estimation process. One of
the strengths of the results of Nerem et al. (2018) is their reduction of these
systematic errors. This fact might also explain why the simple AR(1) is still
widely used in sea-level research. As shown in previous chapters, in GNSS
time series the situation is reversed, with estimation errors being larger than
the systematic ones and dominating the total uncertainty.

Another aspect which has received little attention is the choice of reference
epoch t0. If one chooses this to be the middle of the segment, then one allows
a good separation of the estimation of the bias, linear trend and acceleration.
The separation is perfect in case of no missing data. However, if one chooses
another date, the parameters that are to be estimated are correlated, see also
Williams (2014). Using our satellite Global Mean Sea Level (GMSL) exam-
ple, for a t0 of 1993, the linear trend is 2.6 mm/yr instead of 3.3 mm/yr while
the acceleration remains the same.

Next, note that in the literature significant different values of the global
mean sea-level accelerations can be found, depending on the length of the
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time series that has been analysed. For example, Yi et al. (2017) presented
an acceleration of 0.27±0.17 mm/yr2 for the period 2005-2015 while Church
and White ( 2011) obtained an acceleration of 0.013±0.007 mm/yr2 for the
period 1870-2004. Climate change is a highly non-linear process and a simple
constant acceleration might be too simple model due to various decadal vari-
ations that are superimposed on the secular motions. A linear sea-level rise
describes well the tide gauge observations of the last century, but one should
be cautious with the interpretation of quadratic sea-level rise. In contrast to
post-glacial rebound and tectonic motion, which are very slow geophysical
processes that can be accurately described by linear motions in GNSS time
series, secular sea-level variations are much more difficult to capture with a
low order polynomial. A good review of the difficulties of fitting a trend to
sea-level observations has been published in Visser et al. (2015). For that rea-
son, some researchers dismiss fitting a polynomial and apply other techniques
such as wavelet filtering.

2.3 Reference Frame and Vertical Land Motion

So far we have dealt with changes in the sea level. However, as we noted in the
Introduction, relative sea-level needs to be converted into absolute sea-level
using VLM observations. The first step to measure VLM regionally is to cre-
ate an internally consistent, hemisphere-scale reference frame. Some studies,
such as Mazzotti et al. ( 2007) in the Pacific Northwest, circumvented this
problem by defining a small network. Mazzotti et al. ( 2007) defined for their
study a local network in the east of Vancouver Island and holding a single
inland station (DRAO) fixed. However, large regional or continental scale
analyses require a different approach, due to the rates amplitude of ubiq-
uitous and readily measured continental deformation rivalling with coastal
VLM rates (Herring et al., 2016). In ITRF08, for instance, the reference sta-
tion DRAO used by Mazzotti et al. ( 2007) has a radial velocity of 0.7±0.01
mm/yr based on 27 years of continuous measurements.

In sea-level studies, the estimated VLM relative to Earth’s center of mass
should ideally be associated with a standard error of approximately an order
of magnitude lower than the contemporary climate signals ( i.e. 1–3 mm/yr)
recorded on average in sea-level time series at tide gauges or in satellite obser-
vations (Wöppelmann and Marcos, 2016). Moreover, tight constraints on the
rate of offset between Earth’s center of mass and Earth’s center of figure are
required, as defined by those GPS stations used to realize the reference frame.
In other words, a correlated bias can be produced by any nonzero rate over
hemisphere spatial scales in inferred sea-level rise rates. Recent studies, such
as Santamaría-Gómez et al. (2017), have addressed this issue to conclude that
Earth’s center of figure is drifting 0.0±0.3 mm/yr along the Earth’s rotation
axis. A latitude dependent bias can be produced by a nonzero motion between
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tide gauge SLR rates and their VLM correction using GPS (within the ITRF
reference frame). However, one of the geodesy Grand Challenge (Davis et al.,
2012) is our current limitation in the realization of the terrestrial reference
frame with a combination of observations from multiple techniques including
VLBI, SLR, and GPS (e.g., Altamimi et al., 2011, 2016).

2.4 Estimation of Vertical land Motion

VLM at tide gauges is observed with GPS and is modelled by a linear mo-
tion. In addition, the trajectory model should account for offsets introduced
by hardware changes or seismic events. All these parameters have a signifi-
cant influence on the estimated rate (Gazeaux et al., 2013). Transient tectonic
processes such as slow slip events also can have an impact on the estimated
motions, requiring ideally a proper modeling with a slip inversion for each
event. In Montillet et al. (2018), the authors postulated a constant contri-
bution of the slow slip events to VLM over long periods, together with a
model of the linear process which includes both slow earthquake offsets and
long-term interseismic strain.

Here, the functional model used to model daily positions GPS time series
includes a linear trend, a seasonal variation with periods fixed to annual and
semi-annual and constant phase and amplitude, along with step functions at
hardware changes and known seismic events greater than Mw 5.6. (Bevis and
Brown, 2014) calls this the Standard Linear Trajectory Model which is also
discussed in Chapter 1. To separate the annual signal from the linear trend,
one requires to record observations for a minimum of approximately 2.5 years
at any station (Blewitt and Lavallée, 2002).

GPS time series contain correlated noise which can be described by a
white plus power-law noise model (Williams, 2004). This is slightly different
from the case of sea-level time series where only one type of correlated noise
was present. The fact that we now need to sum two different noise models,
white and power-law, makes it difficult to decompose the covariance matrix
directly into two lower triangles L using the equation of the previous section
(Langbein, 2017). The traditional approach is therefore to sum the white
and power-law noise covariance matrices and afterwards perform a Cholesky
decomposition to obtain the lower triangle L. For the rest the maximum
likelihood estimation scheme remains the same.
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3 Application to the Estimation of Sea-Level Rise in the
Pacific Northwest

3.1 VLM and Tectonic Pattern of the Cascadia region

The first step is to establish a VLM profile for the stations located on the
coast in the Pacific Northwest (Vancouver Island to Northern California). The
continuous VLM profile is generated by using 100 permanent GPS stations
from the Pacific Northwest Geodetic Array (PANGA) (Miller et al., 1998)
and EarthScope Plate Boundary Observatory (UNAVCO, 2009), computed
within the ITRF 2008 reference frame (e.g., Altamimi et al., 2011). These sta-
tions are continuously operating and blanket Cascadia, from northern Cal-
ifornia through Oregon, Washington State, southwestern British Columbia
and Vancouver Island. In order to estimate a smooth VLM profile in the
Pacfic Northwest, we have selected 47 stations located on or within 10 km
of the coast boarding the Pacific ocean, Puget Sound and Salish Sea east of
Vancouver Island. Most selected GPS stations have been continuously op-
erating between 10 to over 20 years. Thus, the estimation of the functional
model described in the previous section together with the stochastic noise
model for these very long time series, allows calculating an accurate long-
term vertical land motion rate at an order of magnitude of a few tenths of
mm/yr (Montillet et al., 2018).

For GPS data processing, raw GPS phase and code observations were
point-positioned with ambiguity resolution using GIPSY/OASIS II, the GPS
Inferred Positioning System/Orbit Analysis and Simulation software devel-
oped and supported by NASA Jet Propulsion Laboratory (JPL) (Zumberge,
1997). Satellite ephemerides, clock corrections, and wide-lane phase bias es-
timates were provided by JPL (Bertiger et al., 2010).

We choose in our processing that the station positions are loosely con-
strained during initial estimation and subsequently transformed into the
ITRF08 (e.g., Altamimi et al., 2011) using only the translation and rotation,
but not scale, components of the JPL-provided Helmert transformations. The
use or omission of the scale term in reference frame realization is a matter of
debate in the community (see (Herring et al., 2016), (He et al., 2017) and
Montillet et al. (2018) for a comprehensive discussion). According to Montil-
let et al. (2018), depending on how the scale term is included in the Helmet
transformation, subtle differences arise in the reference frame definition that
can also have first-order impacts on vertical rate estimates.

The tectonic pattern of the Cascadia region has been intensively studied
with GPS measurements in the early 90s’ (e.g., Hyndman and Wang, 1995;
McCaffrey et al., 2007, 2013; Melbourne et al., 2005; Miller et al., 2002).
The primary tectonic signal stems from subduction of the Juan de Fuca plate
beneath North America at roughly 40 mm/yr (Wilson, 1993). Figure 5 shows
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Fig. 5: Vertical land motion of the Cascadia subduction zone including British
Columbia [A], British Columbia and Washington [B], Oregon [C], Oregon and
Northern California [D]. Only coastal stations are used to derive the vertical
land motion profiles shown in Figure 6 and 7. Note the change of length of 2
mm/yr scale bar between different boxes. (Montillet et al., 2018)

the vertical land motion varying regionally but smoothly, from the Brooks
Peninsula of Vancouver Island at the northern end of the Cascadia margin
southward to the southern terminus of the Cascadia margin at Cape Mendo-
cino, California.

Overall, the VLM in the Cascadia fore arc is separated into three regions.
All of Vancouver Island and the Olympic peninsula (Cascadia’s northern
half) display high uplift rates of almost 5 mm/yr at Woss, BC and Quadra
Island, BC, and with a mean uplift of around 2 mm/yr. The large uplift
values estimated on Vancouver Island originates from the superposition of
subduction interseismic strain and postglacial rebound. These results agree
with Mazzotti et al. ( 2007). Furthermore, large uplift rates of approximately
4 mm/yr are observed along the western Olympic Peninsula of northwest-
ern Washington State. The values tend to diminish southward to almost zero
south of central coastal Washington and remain near zero to near the latitude
of Cape Blanco, Oregon. The mean uplift estimates increase again South of
Cape Blanco (about 1–2 mm/yr), reaching a maximum value of 4 mm/yr at
Crescent City, California, then dropping again to zero at Cape Mendocino,
California. In contrast, the inland waterways of the Puget Sound are charac-
terized by subsidence at rates of 20 mm/yr while the Salish Sea region east
of Vancouver Island is marked by uplift ranging from 1 to 4 mm/yr (e.g.,
Figure 7).

Table 2: GPS-Derived Vertical Land Motion Rate Estimates for Reference
Stations Included in PANGA, PBO, and Mazzotti et al. ( 2007) processing.
(Montillet et al., 2018)

The PANGA and Mazzotti et al. ( 2007) uplift estimates are listed in Ta-
ble 2. 67% of the stations processed with the PANGA methodology, show
the same rates within 1 sigma, whereas 97% are within 2 sigma. Look-
ing at this table, the mean values estimated using the first eight stations,
are 1.34 +/ − 1.07 mm/yr for PANGA, whereas the mean value is equal to
1.62+/−1.20 mm/yr using the estimates from Mazzotti et al. ( 2007), which
is 23% larger on average. Note that Mazzotti et al. ( 2007) utilized shorter
time series ( < 7 yrs) modeled with least squares in the IGS08 reference
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Fig. 6: Interpolated long-term steady-state VLM in the Pacific Coast (Wash-
ington (WA), Oregon (OR), California (CA), and British Columbia (BC)).
Note that the red band is the interpolated uncertainties. The tide gauges are
localized by a green star together with their associated number. (Montillet et
al., 2018)

Fig. 7: Interpolated long-term steady-state VLM in Puget Sound-Salish Sea
corridors in Washington State (WA) and British Columbia (BC). The red
band is the interpolated uncertainties. Note that station with (*) is in BC and
(**) in WA. The confusion is due to the very close latitudes of the stations at
the border between BC and Washington State. The tide gauges are localized
by a green star together with their associated number. (Montillet et al., 2018)

frame, thus impacting the noise properties of the time series compared to
ITRF08. Therefore the difference in processing methodology should explain
the results . Also, looking at the large discrepancy of the uplift estimates at
some stations (e.g., PTRF, BLYN), we cannot exclude possible outliers or
mismodeling the stochastic processes with our choice of the stochastic noise
model for the GPS time series (i.e. Flicker noise with white noise). While
the VLM rates are measured along the coast at 47 disparate GPS stations
that their inferred rates are smoothly varying allows their interpolation to
generate continuous VLM profiles. Note that in Figure 6 and Figure 7, the
VLM profile is obtained by linear interpolation of the uplift estimates. This
continuous profile can be utilized for SLR adaptation planning by communi-
ties where local GPS is not available in order to correct observations recorded
by tide gauges.

3.2 Estimation of the Relative Sea-Level Rise

We selected 18 stations along the Pacific Northwest coast in order to estimate
the relative sea-level rise (RSLR) rates uncorrected for VLM. These stations
are located between the latitudes 400 and 510. At each tide gauge, monthly
records were downloaded from the Permanent Service for Mean Sea Level
[PSMSL] (Holgate et al., 2013), which in some cases have nearly 115 years
of measurements (e.g., Seattle). The RSLR rates are estimated taking into
account the presence of coloured and other noise sources as described in the
previous sections. Table 3 shows different estimates of the uncorrected RSLR
for five tide gauges along coastal Pacific Northwest, Puget Sound, and Salish
Sea. As shown in Tables 3 and 4 , our RSLR results are generally closer to
the values estimated from the NRC group (NRC , 2015). The FARIMA model
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Table 3: Estimated relative sea-level rise (RSLR) around Pacific Northwest at
selected stations. Note for each noise model (ARMA(p,q), ARFIMA(p,d,q),
GGM), the optimum lags p and q are selected either by minimizing the AIC
or BIC (Burnham and Anderson, 2002). Our results are compared with
previous studies (Douglas, 1991; Mazzotti et al., 2007; Wöppelmann et al.,
2009; Sweet et al., 2014; NRC , 2015). µ is the estimated RSLR with σ the
associated uncertainty. Uncertainties are one sigma.Montillet et al. (2018)

Fig. 8: Red: uncorrected (biased by vertical land motion) Cascadia sea-level
rise (SLR) rates estimated from long-term (∼ 50−100 yr) tide gauge mea-
surements; Blue: after correction for interpolated GPS-measured vertical land
motion (absolute) at 18 tide gauges around the Pacific Northwest. Note that
the full name of the tide gauges are displayed in Table 4.We display a zoom
of the main figure (i.e., zoom of box A) due to a visual issue to separate the
ones with close latitudes.The black line is the ensemble of GIA models from
NRC (2015). Tide gauge trends estimated with GGM noise model. (Montillet
et al., 2018)

seems to produce smaller uncertainties (using the AIC). Assuming that the
AIC selects the lags more optimally than the BIC, it may suggest the pres-
ence of long memory processes (i.e., power-law noise) in the TG time series,
which should be better accounted for using this stochastic model than using
a model such as the ARMA. Even though we have circumvented the bias
due to mismodeling the TG measurements using information criteria, we ac-
knowledge that estimated RSL values are sensitive to the choice of record
length of the tide gauges selected following previous studies (Douglas, 1991)
and that unmodeled multidecade transients will impact rate estimates differ-
ently based on both the time series duration and the structure of any known
long-term transients. Note that the optimality of model selection using infor-
mation criteria is an active research area within the geophysical community
(He et al., 2017). RSLR (red) is displayed in Figure 8 as a function of

Table 4: Estimation of the Relative SLR(RSLR) and corrected RSLR with
interpolated GPS uplift velocities. (Montillet et al., 2018)

latitude, estimated from the tide gauge uncorrected for VLM. RSLR values
are scattered along coastal Cascadia, between −2 and +5 mm/yr. This re-
sult is expected due to the combination of various geophysical processes, in
particular the highly variable tectonic and GIA activity together with the
intrinsic scatter of average sea-level itself due to the various hydrodynamic
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processes controlling yearly regional variations (Church et al., 2004). These
RSLR estimates agree with previous studies (e.g., Mazzotti et al., 2007;
Sweet et al., 2014; NRC , 2015). Thus, their dependence on the choice of the
stochastic noise model using the AIC or BIC criteria is relatively minor ( at
∼ 0.1 sigma confidence level). Uncertainties are computed using the MLE as
implemented in the Hector software (Bos et al., 2013b), producing realistic
values less sensitive to anomalies (i.e. estimates produced during windy or
stormy time periods). Note that at Astoria (Oregon), the RSLR estimate
can be assimilated as an outliers, because of the uncertainties larger than the
computed linear trend. The station lies 10 km from the coast up the Columbia
River estuary. Therefore, we infer that the river itself likely controls much
of apparent sea-level fluctuation, consistent with Mazzotti et al. ( 2007) and
Sweet et al. (2014). Also the tide gauge closed to the GPS station CHZZ has
not been used, due to the overall low quality of the raw observations.

3.3 Discussion on the Absolute Sea-Level Rise and
Sources of Error

The Absolute sea-level rise (ASLR) is defined as the sum of uncorrected sea-
level rise or RSLR, estimated at each tide gauge, with the addition of the
VLM measurements inferred from the daily position GPS time series. We
use the interpolated value from the VLM coastal profile closest to each of
the 18 tide gauges in order to compute the ASLR. The PANGA GPS uplift
velocities is chosen because of the large number of stations. In addition, the
permanent stations included in both PANGA and PBO processing systems
show no significant differences at the one sigma confidence interval. Figure 8
displays the RSLR and the ASLR in the Pacific Northwest. The figure also
includes a measure of the Glacial Isostatic Adjustment (GIA) using an en-
semble of models. The VLM correction to the RSLR estimates includes both
GIA and tectonic strain accumulation. However, it is difficult to accurately
isolate the two sources of uplift with imperfect knowledge of mantle viscos-
ity, recent glaciation history, and interseismic coupling along the Cascadia
megathrust fault. The GIA models come from NRC (2015), and include var-
ious contributions such as the changes in geocentric (absolute) sea-level and
VLM.

Finally, the figure also shows that the large scattering of the RSLR mea-
surements, is reduced after correction for VLM, to a cluster around 2 mm/yr
of ASLR. Prior to correction the mean of the RSLR measurements are 0.526
±1.59 mm/yr, whereas after correction they 1.996 ±1.18 mm/yr. These values
are consistent with other studies of the SLR measurements in the northeast-
ern Pacific (e.g., Church et al., 2004; Wöppelmann et al., 2009; NRC , 2015).
Regionally based on the ARMA estimates, along the outer Pacific coast of
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Washington State the ASLR rate is 1.366 ±0.76 and 2.406 ±1.41 mm/yr on
Vancouver Island. These values are in the high end of the interval defined
by the estimates from previous studies of the twentieth century global mean
sea-level rise (Church and White, 2011). Along coastal Oregon ASLR aver-
ages 1.666 ±0.97 mm/yr, and for northern California 1.996 ±1.14 mm/yr.
This drop in uncertainty may suggest that the VLM correction absorbs much
of the regional scatter in tide gauge SLR estimates. Also the study profiles
expected rebound associated with GIA, drawn from an ensemble of models
computed in NRC (2015), which suggest that roughly half the VLM on Van-
couver Island arise from GIA and the rest from subduction-related strain
accumulation.

4 Conclusions on Global Mean Sea-Level

In this chapter we have shown that also tide gauge and satellite altimetry
time series contain correlated noise. Since this noise can be described by a
single noise model, not a sum of various models, we presented the recent ef-
ficient maximum likelihood method of Langbein (2017) to estimate the noise
parameters and the sea-level rate. Furthermore, we emphasised that in con-
trast to linear sea-level rise, sea-level acceleration is much harder to detect. In
addition, the estimated acceleration seems to depend on the time span used
which might indicate that a simple acceleration is not an adequate model for
the highly nonlinear processes that take place within the ocean.

Tide gauges only observe relative sea level and GPS derived vertical mo-
tion is needed to convert these values into absolute sea level rise. To illustrate
this process, we presented tide gauge and GPS time series from the North-
west Pacific. In this region the rates are more similar to twenty first century
global rates (3.16 ± 0.7 mm/yr), whereas eastern Pacific satellite rates are
significantly lower than the global mean value. Much of the west coast of
the Americas actually show an apparent decrease in satellite geocentric sea
surface height over the last 20 years (Church and White, 2011). For tide
gauge measurements, many studies have also underlined how they are im-
pacted by many processes that can vary from hemispherical, most notably
the Pacific decadal oscillation, to spatially localized, and which may act over
timescales over roughly a year to several decades. Such processes alter sur-
face winds, ocean currents, temperature, and salinity, and, in turn sea-level,
all superimposed on long-term background sea-level rise (e.g., Church et
al., 2004; Nicholls and Cazenave, 2010; Church and White, 2011; Cazenave
and Le Cozannet, 2013; IPCC , 2013; Cazenave et al., 2014; Hay et al.,
2015) . Therefore tide gauges-based mean sea-level exhibits large interannual
variability compared with the global mean value estimated from satellite al-
timetry. However, the values are the same order of magnitude to regional
measurements reported by satellite altimetry (Prandi et al., 2009). In the
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Pacific Northwest, ASLR mean reported here of 1.36 ±0.75 mm/yr is ∼ 20%
smaller than the 1.7 mm/yr global mean SLR from 1901 to 2010 (IPCC ,
2013). However, if we take into account Vancouver Island, the ASLR is around
1.99 ±1.18 mm/yr and thus ∼ 17% higher than the global mean SLR.

Finally, coastal communities facing the risk of rapid sea-level rise should
utilize sea-level projections and flooding maps to develop with local author-
ities a strategy for long-term adaptation imposed by the effects of climate
change. In the Pacific Northwest, the average absolute SLR obtained after
accounting for VLM yields, for coastal Cascadia, roughly 2 mm/yr, very sim-
ilar to the 2 mm/yr previously described with other global observations (e.g.,
Church et al., 2004; NRC , 2015). Within Puget Sound widespread subsidence
identified with GPS shows that rate of SLR will be exacerbated.

Thus, the methodology developed in Montillet et al. (2018) by estimating
a smooth VLM profile along the coast with the large number of permanent
GPS stations available in the Cascadia region, and then interpolating the
value to correct the RSLR at each tide gauge, can be replicated around the
world, knowing the sheer numbers of GPS stations now available (over 16,000
globally (Blewitt et al. , 2016) ) and leaving just a few coastlines unmeasured.
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BOX A

ZOOM OF BOX A

Red: uncorrected (biased by vertical land motion) Cascadia sea-level rise
(SLR) rates estimated from long-term (∼ 50 − 100 yr) tide gauge measure-
ments; Blue: after correction for interpolated GPS-measured vertical land
motion (absolute) at 18 tide gauges around the Pacific Northwest. Note that
the full name of the tide gauges are displayed in Table 4.We display a zoom
of the main figure (i.e., zoom of box A) due to a visual issue to separate the
ones with close latitudes.The black line is the ensemble of GIA models from
NRC (2015). Tide gauge trends estimated with GGM noise model. (Montillet
et al., 2018)
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Estimated accelerations using various noise models.

Noise model Acceleration mm/yr2

White Noise 0.060 +/ − 0.008
AR(1)/ARFIMA(1,d,0)/GGM 0.058 +/ − 0.020

GPS-derived vertical land motion rate estimates for reference stations in-
cluded in PANGA, PBO and Mazzotti et al. ( 2007) processing. µ is the esti-
mated velocity, σ is the associated uncertainty. Uncertainties are one sigma.
PANGA and PBO-NMT results are computed using Hector. NaN means that
the station was not available.Montillet et al. (2018)

PANGA NMT Mazzotti et al. ( 2007)
Lat. Lon µ σ µ σ µ σ

ALBH 48.39 -123.49 0.69 0.16 0.78 0.27 1.1 0.9
PGC5 48.65 -123.45 0.77 0.21 0.05 0.45 1.80 1.0
NANO 49.29 -124.08 2.23 0.27 1.77 0.36 2.50 0.90
UCLU 48.92 -125.54 2.46 0.23 1.89 0.33 2.70 0.90
DRAO 49.32 -119.62 1.01 0.21 1.15 0.34 1.20 0.70
SC02 48.55 -123.01 0.26 0.20 0.30 0.36 0.80 1.30
SEAT 47.65 -122.31 0.09 0.33 -0.21 0.31 -0.60 0.90
NEAH 48.29 -124.62 3.24 0.19 3.20 0.30 3.50 1.00
PCOL 47.17 -122.57 -0.64 0.31 -0.64 0.34
P423 47.29 -122.94 -0.37 0.23 -0.91 0.29
RPT1 47.39 -122.37 -1.83 0.39 NaN NaN

KTBW 47.55 -122.79 -0.50 0.20 -0.44 0.26
P426 47.80 -122.51 -2.36 0.25 -2.60 4.12
P437 48.00 -122.46 -0.42 0.29 -1.38 0.66

BLYN 48.02 -122.93 1.85 1.53 -2.92 2.43
P435 48.06 -123.50 0.59 0.37 0.10 0.35

COUP 48.22 -122.68 -1.05 0.33 1.10 2.59
WHD1 48.31 -122.69 -0.53 0.84 NaN NaN
P439 48.71 -122.91 -0.01 0.23 -0.29 0.41
SC04 48.92 -123.70 1.23 0.19 1.03 0.22
PTAL 49.26 -124.86 3.48 0.14 0.04 0.55
GLDR 49.68 -126.13 4.01 0.53 3.02 0.57
ELIZ 49.87 -127.13 2.46 0.22 2.57 0.35

QUAD 50.13 -125.33 4.34 0.35 3.85 0.44
WOST 50.21 -126.60 5.31 2.35 NaN NaN
BCOV 50.54 -126.84 2.76 0.19 3.55 0.65
HOLB 50.64 -128.13 2.39 0.21 0.87 0.98
P161 40.64 -124.21 -0.95 0.24 -1.47 0.34
P159 40.50 -124.28 -0.83 0.25 -1.58 0.28
P162 40.69 -124.24 -1.22 0.24 -1.59 0.29
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TRND 41.05 -124.15 -0.85 0.27 -0.70 0.28
P316 41.56 -124.08 -2.18 0.53 -2.06 0.59

PTSG 41.78 -124.25 3.56 0.23 3.03 0.25
P734 42.07 -124.29 3.17 0.28 2.03 0.36
P362 42.21 -124.23 2.79 0.34 2.05 0.41
P733 42.44 -124.41 2.47 0.29 0.89 0.33

CABL 42.84 -124.56 1.21 0.22 1.43 0.24
P364 43.09 -124.41 2.32 0.29 1.73 0.44
P365 43.39 -124.25 0.99 0.27 0.01 0.40
P366 43.61 -123.98 0.67 0.34 -0.60 0.34
P367 44.59 -124.06 -0.22 0.34 -0.81 0.39
P395 45.02 -123.86 0.17 0.35 -0.15 0.34
P396 45.31 -123.82 1.06 0.45 0.16 0.41

CHZZ 45.48 -123.98 0.19 0.38 0.81 0.24
TPW2 46.21 -123.77 0.23 0.16 0.48 0.22
P398 46.92 -123.92 1.45 0.27 0.55 0.41

PABH 47.21 -124.20 0.22 0.19 0.23 0.30
P402 47.77 -124.31 2.47 0.24 1.66 0.45

PTRF 48.54 -124.41 4.99 0.65 1.66 1.01
BAMF 48.84 -125.13 2.69 0.42 1.76 0.44
TFNO 49.15 -125.91 2.86 0.53 1.47 0.46
NTKA 49.59 -126.62 3.58 0.24 4.27 0.44
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Estimated relative sea-level rise (RSLR) around Pacific Northwest at selected
stations. Note for each noise model (ARMA(p,q), ARFIMA(p,d,q), GGM),
the optimum lags p and q are selected either by minimizing the AIC or BIC
(Burnham and Anderson, 2002). Our results are compared with previous
studies (Douglas, 1991; Mazzotti et al., 2007; Wöppelmann et al., 2009;
Sweet et al., 2014; NRC , 2015). µ is the estimated RSLR with σ the associated
uncertainty. Uncertainties are one sigma.Montillet et al. (2018)

Source Tide Gauge Period (date/yr) Rate SLR mm/yr
µ σ

Douglas ( 1991) Friday H., WA 1930-1980 0.6 N/A
Mazzotti et al. ( 2007) Friday H., WA 62 yr 0.9 0.3

Sweet et al. (2014) Friday H., WA 1934-2006 1.13 0.33
NRC (2015) Friday H., WA 1934-2008 1.04 N/A
Our Study Friday H., WA 1934-2014

(AIC) ARMA(4,0) 1.07 0.18
(AIC) ARFIMA(3,-0.50± 0.11,0) 1.05 0.09

(AIC) GGM 1.07 0.19
(BIC) ARMA(1,1) 1.07 0.18

(BIC) ARFIMA(1,-0.65± 0.06,1) 1.05 0.08
(BIC) GGM 1.07 0.19

Douglas ( 1991) Neah Bay, WA 1930-1980 -1.6 N/A
Mazzotti et al. ( 2007) Neah Bay, WA 44 yr -1.6 0.6

Wöppelmann et al. (2009) Neah Bay, WA 65 yr -1.59 0.22
Sweet et al. (2014) Neah Bay, WA 1934-2006 -1.63 0.36

NRC (2015) Neah Bay, WA 1934-2008 -1.77 N/A
Our Study Neah Bay, WA 1934-2014

(AIC) ARMA(3,0) -1.76 0.19
(AIC) ARFIMA(1,-0.65± 0.12,2) -1.79 0.10

(AIC) GGM -1.76 0.21
(BIC) ARMA(1,1) -1.76 0.19

(BIC) ARFIMA(1,0.17± 0.05,0) -1.74 0.30
(BIC) GGM -1.76 0.21

Douglas ( 1991) Seattle, WA 1930-1980 2.50 N/A
Mazzotti et al. ( 2007) Seattle, WA 92 yr 2.20 0.20

Wöppelmann et al. (2009) Seattle, WA 104 yr 2.06 0.11
Sweet et al. (2014) Seattle, WA 1898-2006 2.06 0.17

NRC (2015) Seattle, WA 1934-2008 2.01 N/A
Our Study Seattle, WA 1934-2014

(AIC) ARMA(1,2) 2.01 0.11
(AIC) ARFIMA(0,0.15± 0.04,4) 1.97 0.15

(AIC) GGM 2.01 0.19
(BIC) ARMA(1,1) 2.00 0.10

(BIC) ARFIMA(1,0.24± 0.04,0) 1.96 0.20
(BIC) GGM 2.01 0.19

Douglas ( 1991) Astoria, OR 1930-1980 -0.40 N/A
Mazzotti et al. ( 2007) Astoria, OR 77 yr -0.40 0.30

Sweet et al. (2014) Astoria, OR 1925-2006 -0.31 0.40
NRC (2015) Astoria, OR 1925-2008 -0.38 N/A
Our Study Astoria, OR 1925-2014

(AIC) ARMA(3,3) -0.26 0.22
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(AIC) ARFIMA(3,0.09± 0.12,0) -0.31 0.11
(AIC) GGM -0.25 0.24

(BIC) ARMA(1,0) -0.26 0.21
(BIC) ARFIMA(0,0.27± 0.04,1) -0.22 0.40

(BIC) GGM -0.25 0.24
Douglas ( 1991) Crescent, CA 1930-1980 -0.9 N/A

Sweet et al. (2014) Crescent, CA 1933-2006 -0.65 0.36
NRC (2015) Crescent, CA 1933-2008 -0.73 N/A
Our Study Crescent, CA 1933-2014

(AIC) ARMA(4,0) -0.81 0.19
(AIC) ARFIMA(3,-0.59± 0.11,0) -0.80 0.10

(AIC) GGM -0.81 0.20
(BIC) ARMA(1,0) -0.82 0.16

(BIC) ARFIMA(1,0.19± 0.06,0) -0.77 0.30
(BIC) GGM -0.81 0.20
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